10 research outputs found

    Adaptive Morphology for Multi-Modal Locomotion

    Get PDF
    There is a growing interest in using robots in dangerous environments, such as for exploration, search-and-rescue or monitoring applications, in order to reduce the risks for workers or rescuers and to improve their efficiency. Typically, flying robots offer the possibility to quickly explore large areas while ground robots can thoroughly search specific regions of interest. While existing robotic solutions are very promising, they are often limited to specific use cases or environments. This makes them impractical for most missions involving complex or unpredictable scenarios, such as search-and-rescue applications. This limitation comes from the fact that existing robots usually exploit only a single locomotion strategy, which limits their flexibility and adaptability to different environments. In this thesis, a multi-modal locomotion strategy is investigated as a way to increase the versatility of mobile robots. We explore integrated design approaches, where the same actuators and structure are used for different modes of locomotion, which allows a minimization of the weight and complexity of the robot. This strategy is challenging because a single locomotor system must accommodate the potentially conflicting dynamics of multiple modes of locomotion. Herein, we suggest taking inspiration from nature, in particular the common vampire bat \emph{Desmodus rotundus}. The goal being to make multiple modes of locomotion dynamically compatible (i.e. have compatible speeds and torques requirements), by optimizing the morphology of the locomotor system and even by adapting the morphology of the robot to a specific mode of locomotion. It is demonstrated in this thesis that the integrated design approach can be effectively implemented on a multi-modal aerial and terrestrial robot, and that two modes of locomotion can be made dynamically compatible by optimizing the morphology. Furthermore, an adaptive morphology is used to increase the efficiency of the different modes of locomotion. A locomotor system used both for walking on the ground and controlling flight, has been successfully implemented on a multi-modal robot, which further has deployable wings to increase its performances on the ground and in the air. By successfully exploiting the concepts of integrated design and adaptive morphology, this robot is capable of hovering, forward flight and ground locomotion. This robot demonstrates a very high versatility compared to state of the art of mobile robots, while having a low complexity

    Foldable and Self-Deployable Pocket Sized Quadrotor

    Get PDF
    Aerial robots provide valuable support in several high-risk scenarios thanks to their capability to quickly fly to locations dangerous or even inaccessible to humans. In order to fully benefit from these features, aerial robots should be easy to transport and rapid to deploy. With this aim, this paper focuses on the development of a novel pocket sized quadrotor with foldable arms. The quadrotor can be packaged for transportation by folding its arms around the main frame. Before flight, the quadrotor’s arms self-deploy in 0.3 seconds thanks to the torque generated by the propellers. The paper describes the design strategies used for developing lightweight, stiff and self-deployable foldable arms for miniature quadrotors. The arms are manufactured according to an origami technique with a foldable multi-layer material. A prototype of the quadrotor is presented as a proof of concept and performance of the system is assessed

    A Perching Mechanism for Flying Robots Using a Fibre-Based Adhesive

    Get PDF
    Robots capable of hover flight in constrained indoor environments have many applications, however their range is constrained by the high energetic cost of airborne locomotion. Perching allows flying robots to scan their environment without the need to remain aloft. This paper presents the design of a mechanism that allows indoor flying robots to attach to vertical surfaces. To date, solutions that enable flying robot with perching capabilities either require high precision control of the dynamics of the robot or a mechanism robust to high energy impacts. We propose in this article a perching mechanism comprising a compliant deployable pad and a passive self-alignment system, that does not require any active control during the attachment procedure. More specifically, a perching mechanism using fibre-based dry adhesives was implemented on a 300~g flying platform. An adhesive pad was first modeled and optimized in shape for maximum attachment force at the low pre-load forces inherent to hovering platforms. It was then mounted on a deployable mechanism that stays within the structure of the robot during flight and can be deployed when a perching maneuver is initiated. Finally, the perching mechanism is integrated onto a real flying robot and successful perching maneuvers are demonstrated as a proof of concept

    An Active Uprighting Mechanism for Flying Robots

    Get PDF
    Flying robots have unique advantages in the exploration of cluttered environments such as caves or collapsed buildings. Current systems however have difficulty in dealing with the large amount of obstacles inherent to such environments. Collisions with obstacles generally result in crashes from which the platform can no longer recover. This paper presents a method for designing active uprighting mechanisms for protected rotorcraft-type flying robots that allow them to upright and subsequently take off again after an otherwise mission-ending collision. This method is demonstrated on a tailsitter flying robot which is capable of consistently uprighting after falling on its side using a spring-based ’leg’ and returning to the air to continue its mission

    Euler Spring Collision Protection for Flying Robots

    Get PDF
    This paper addresses the problem of adequately protecting flying robots from damage resulting from collisions that may occur when exploring constrained and cluttered environments. A method for designing protective structures to meet the specific constraints of flying systems is presented and applied to the protection of a small coaxial hovering platform. Protective structures in the form of Euler springs in a tetrahedral configuration are designed and optimised to elastically absorb the energy of an impact while simultaneously minimizing the forces acting on the robot’s stiff inner frame. These protective structures are integrated into a 282 g hovering platform and shown to consistently withstand dozens of collisions undamaged

    A Flying Robot with Adaptive Morphology for Multi-Modal Locomotion

    Get PDF
    Abstract — Most existing robots are designed to exploit only one single locomotion mode, such as rolling, walking, flying, swimming, or jumping, which limits their flexibility and adaptability to different environments where specific and different locomotion capabilities could be more effective. Here we introduce the concept and the design of a flying robot with Adaptive Morphology for Multi-Modal Locomotion. We present a prototype that can use its wings to walk on the ground and fly forward. The wings are used as whegs to move on rough terrains. This solution allows to minimize the structural mass of the robot by reusing the same structure (here the wings) for different modes of locomotion. Furthermore, the morphology of the robot is analysed and optimized for ground speed. I

    A bioinspired multi-modal flying and walking robot

    No full text
    With the aim to extend the versatility and adaptability of robots in complex environments, a novel multi-modal flying and walking robot is presented. The robot consists of a flying wing with adaptive morphology that can perform both long distance flight and walking in cluttered environments for local exploration. The robotĘĽs design is inspired by the common vampire bat Desmodus rotundus, which can perform aerial and terrestrial locomotion with limited trade-offs. Wings' adaptive morphology allows the robot to modify the shape of its body in order to increase its efficiency during terrestrial locomotion. Furthermore, aerial and terrestrial capabilities are powered by a single locomotor apparatus, therefore it reduces the total complexity and weight of this multi-modal robot

    Foldable and self-deployable aerial vehicle

    No full text
    An aerial vehicle including self-autonomous deployable arms and methods of deploying the vehicle are disclosed. The arms may include patterns located thereon that allow the arms to transition between wrapped, flat, and deployed configurations autonomously without the need for direct intervention by a user
    corecore